Antimicrobial optimisation: an interactive workshop for hospital pharmacists

Dr Antonella Tonna,
Robert Gordon University, Aberdeen

Dr Jacqueline Sneddon
Healthcare Improvement Scotland, Glasgow

• Nothing to declare
Workshop plan

• Welcome and introductions

• What is antimicrobial stewardship? (30 mins)

• Demonstration/discussion of stewardship tools using examples from Scotland

• Group activities (40 mins)

• Discussion and final thoughts (20 mins)

Learning objectives

• To understand the importance of appropriate antimicrobial treatment and the implications associated with misuse of antimicrobials

• To explore the different strategies which can be employed by hospital pharmacists to optimize antimicrobial therapy

• To consider ways of ensuring pharmaceutical care is delivered to patients receiving antimicrobials
• Antimicrobials are one of the most frequently prescribed medicines in hospital

• Around 20% of antimicrobial prescriptions in hospital may be inappropriate
Introduction to antimicrobial stewardship

Dr Jacqueline Sneddon
Healthcare Improvement Scotland

Outline of presentation

• Current position of antimicrobial resistance (AMR) in Europe
• What is antimicrobial stewardship?
• Key elements of a stewardship programme
• ‘Start Smart then Focus’
• Role of the pharmacist in stewardship
Antibiotic resistance is now as serious a threat as terrorism and could trigger an 'apocalyptic scenario', warns UK's top doctor

- Dame Sally Davies said people may die from routine infections after surgery within 20 years
- This is due to a lack of effective antibiotics
- Says situation so serious that the issue should be added to Government's list of civil emergencies

Why a sore throat could soon be fatal: Bugs are becoming more resistant to antibiotics, warn health chiefs 'A post-antibiotic era means, in effect, an end to modern medicine as we know it,' warns WHO chief Dr Margaret Chan

https://www.youtube.com/watch?v=ZGxT9nAiZo
European resistance data

European antimicrobial consumption

Relationship between use and resistance

Table 2. Causal associations between antimicrobial use and the emergence of antimicrobial resistance.

Changes in antimicrobial use are paralleled by changes in the prevalence of resistance. Antimicrobial resistance is more prevalent in health care-associated bacterial infections, compared with those from community-acquired infections. Patients with health care-associated infections caused by resistant strains are more likely than control patients to have received prior antimicrobials. Areas within hospitals that have the highest rates of antimicrobial resistance also have the highest rates of antimicrobial use. Increasing duration of patient exposure to antimicrobials increases the likelihood of colonization with resistant organisms.

NOTE. A causal association between antimicrobial use and the emergence of antimicrobial resistance has been reviewed elsewhere [9, 19–22] and is strongly suggested on the basis of several lines of evidence that are derived from patient and population levels of analysis, colonization and infection data, and retrospective and prospective studies [23–31]. Adapted from [10].

Why is this a problem?

• Impact on patient care
 – ↓ survival with resistant infections
 – ↑ duration of stay
 – ↑ costs

• Hampers the control of infectious diseases and jeopardises health-care gains to society

• Threat of a return to the pre-antibiotic era as few new antibiotics in development
Antimicrobial Stewardship

- One of key methods to address antimicrobial resistance along with infection control and improved environmental decontamination

- Overuse and misuse of antimicrobials is well documented in the literature – room for improvement through optimisation of use

- Effective stewardship shown to reduce Healthcare Associated Infections with associated benefits for patient outcomes - morbidity and mortality

What is Antimicrobial Stewardship?

A series of multi-professional interventions across all care settings to improve the use of antimicrobials

➤ timely and optimal selection, dose and duration of an antimicrobial

➤ aim for the best clinical outcome for the treatment or prevention of infection

➤ with minimal toxicity to the patient and minimal impact on resistance and other ecological adverse events such as *C. difficile* infection
Antimicrobial Stewardship

Key elements of any Antimicrobial Stewardship programme

- Multi-professional Antimicrobial Management Team across both community and hospital supported by senior managers
- Engagement of the clinical community
- Antimicrobial guidance and formulary with restrictions on use of specific antimicrobials
- Surveillance of antimicrobial use and resistance
- Method of measuring compliance with guidance and evaluating impact of interventions to improve prescribing practice
- Education programme for healthcare staff and the public
Further resources on antimicrobial stewardship

‘Start smart then focus’

https://www.gov.uk/government/publications/antimicrobial-stewardship-start-smart-then-focus
SSTF - Pharmacist Responsibilities

• Ensure allergy status is correct and complete
• All patients on antibiotics for treatment of infection reviewed daily.
• Review should include:
 – Is an antibiotic indicated?
 • i.e. has the diagnosis of infection been substantiated and is it an infection that requires antibiotic therapy
 – Is the antibiotic appropriate?
 • Consider drug choice, route, dose, duration
 • Check micro results (can we de-escalate to narrow spectrum agents)
 – Is the antibiotic working?
 • Check radiology reports, inflammatory markers, observations, end of bed review
 – Can the antibiotic be stopped?
 – Can the antibiotic be switched to oral?
• All interventions made should be documented in the medical notes and discussed with the clinical team.

Stewardship role of the pharmacist in hospital practice

• Approximately 1/3 of patients in hospital are prescribed an antibiotic and up to 1/2 of these prescriptions may be incorrect or inappropriate.
 o Examples include antibiotic not required, wrong dosage, penicillin use in allergic patients, prolonged courses, broad spectrum rather than narrow spectrum.

• Clinical pharmacists working on wards should promote use of policies to ward staff, ensure alert antibiotic procedures are followed and help to educate medical and nursing staff.

• Clinical Pharmacists and Pharmacy staff in Dispensary and Sterile Units should check all orders/prescriptions comply with local policy.
Antimicrobial Pharmacists
What do they do?

• New clinical specialist role developed in UK since 2000

• Key member of antimicrobial team tasked with local delivery of stewardship

• Key attributes:
 – Experienced clinical pharmacist
 – Skills for data analysis and audit
 – Ability to teach multi-professional groups
 – Confident communicator
 – Leadership skills

Input to direct patient care

• Support ward clinical staff in identifying and resolving issues with antimicrobial therapy

• Promote/enforce antimicrobial policies including:
 o Alert (restricted) agents
 o Intravenous to oral switch therapy (IVOST)
Specific pharmacist role

• Gentamicin and vancomycin
 – Major source of errors and incidents
 – Training of nursing and medical staff is important role
 – Often lack of information on dose and sample times
 – Lots of interventions required to improve care and ↓ risk
 – On-line calculators plus prescription & monitoring charts can help

Surveillance of antimicrobial use

• Standardised information on antibiotic use to measure trends and identify priorities for improvement (based on quality or cost)

• Antibiotic use measured in Defined Daily Dose and may be related to hospital activity e.g. Admissions, Occupied Bed Days

• Surveillance framework
 – Data at hospital, unit or ward level
 – Total use and selected antibiotics
Audit activities

- Point prevalence surveys
- Compliance with local antibiotic policy
- Prescribing indicators
- Vancomycin and gentamicin prescribing
- Intravenous to oral switch therapy (IVOST)
- Targeted audits based on trends in antibiotic use or HAI rates

Example of point prevalence survey data from Scotland 2011

Prevalence= 32.3%
(95% CI 30.9-33.8)
10.3% of patients received 3 or more AM

Indication for prescribing

<table>
<thead>
<tr>
<th>Indication for prescribing</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community acquired infection</td>
<td>311</td>
<td>55.3</td>
</tr>
<tr>
<td>Hospital acquired infection</td>
<td>1285</td>
<td>22.7</td>
</tr>
<tr>
<td>Surgical prophylaxis</td>
<td>492</td>
<td>8.5</td>
</tr>
<tr>
<td>Medical prophylaxis</td>
<td>431</td>
<td>7.6</td>
</tr>
<tr>
<td>Long term / intermediate care acquired infection</td>
<td>79</td>
<td>1.4</td>
</tr>
<tr>
<td>Other</td>
<td>70</td>
<td>1.2</td>
</tr>
<tr>
<td>Not recorded</td>
<td>197</td>
<td>3.3</td>
</tr>
<tr>
<td>Total</td>
<td>5664</td>
<td>100</td>
</tr>
</tbody>
</table>

* Clinician defined hospital infection. Symptoms started 48 hours after admission to hospital

Treatment of infection (n=4494)

- Respiratory infection (31.2%), SSTI (18.0%), UTI (13.8%) and GI (13.5%)
- Amoxicillin (15.6%), co-amoxiclav (10.0%), metronidazole (9.0%)
Quality improvement initiatives

Improving management of common infections using improvement methodologies:

• Community acquired pneumonia care bundle
• Staph. aureus bacteraemia – algorithm for diagnosis and management
• Sepsis 6 care bundle which includes measure to improve antibiotics given within 1 hour of diagnosis

Educational activities

• Nursing staff - Gent & vanc, IVOST policy, Alert Antibiotics
• Medical staff - Gent & vanc, antibiotic policies
• Hospital pharmacy staff - Alert antibiotics, MRSA eradication, Hand hygiene, audit results
• Pre-registration pharmacists
• Community pharmacists
• Pharmacy and medicine undergraduates - Pharmacokinetics, Antimicrobial use
Summary

• Antimicrobial stewardship is essential to contain antimicrobial resistance and preserve the activity of antibiotics.

• All healthcare professionals have a role in antimicrobial stewardship.

• All pharmacists can help to promote and deliver stewardship to optimise antimicrobial therapy for patients.

PREScribing INDICATORS

Hospital – based empirical prescribing:
Antibiotic prescriptions are compliant with the local antimicrobial policy and the rationale for treatment is recorded in the clinical case note in ≥95% of sampled cases.
Antibiotic choice (name of antibiotic) complies with that in policy for the indication documented in medical notes

YES
Choice compliant

NO
Refer to medical notes
Reason for choice documented?

YES
Treatment based on
Microbiologist/ID advice
or
Clinical rationale for choice
documented
Choice compliant

NO
No reason documented
Choice non-compliant

Complete non-compliance
proforma
Point Prevalence Surveys (PPS) are used to audit the quality of antimicrobial prescribing. Repeated use of PPS has been used at European and national level to map trends over time in relation to quality measures such as:

- % patients receiving an antibiotics,
- % intravenous antibiotics,
- % compliance with local antibiotic policy.

Ideally a PPS is a snapshot taken on a single day across a whole hospital to collect information about patients prescribed antibiotics on that day.

This is seldom practical so usually the PPS will be carried out over a period of 1 or 2 weeks to allow staff collecting data sufficient time to visit all wards.

Large national PPS usually have a one or two month window for participating hospitals to collect and submit data.

European Surveillance of Antimicrobial Consumption (ESAC) dataset

<table>
<thead>
<tr>
<th>Data element</th>
<th>Data options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of drug</td>
<td>From filtered WHO Drug list</td>
</tr>
<tr>
<td>Route</td>
<td>Parenteral, Oral, Rectal, Inhalation</td>
</tr>
<tr>
<td>Unit dose</td>
<td>Grams or MU, to 3 decimal places</td>
</tr>
<tr>
<td>Dosage frequency</td>
<td>1-12 per day, every (18,36,48) hours, twice per week, three times per week, continuous infusion</td>
</tr>
<tr>
<td>Indication</td>
<td>Coded list of indications</td>
</tr>
<tr>
<td>Indication group</td>
<td>Indication Group</td>
</tr>
<tr>
<td>Prophylaxis</td>
<td>Surgical, Medical</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>Coded list of diagnoses</td>
</tr>
<tr>
<td>Day of therapy</td>
<td>1-28, 29+, Long Term, Unknown</td>
</tr>
<tr>
<td>Is Review / Stop Date Documented</td>
<td>y/n/unknown</td>
</tr>
<tr>
<td>Reason in notes</td>
<td>y/n/unknown</td>
</tr>
<tr>
<td>Complies with (local) guidance</td>
<td>y/n/unknown</td>
</tr>
<tr>
<td>Date start Indication</td>
<td>DD/MM/YY (the date first antimicrobial was prescribed for indication)</td>
</tr>
</tbody>
</table>

Simplified version of PPS tool

Group activities

• Using the case studies provided, discuss the questions provided.

• Your group will be asked to focus on one case.
• Antimicrobials are one of the most frequently prescribed medicines on the wards.

• Around 20% of antimicrobial prescriptions in hospital may be inappropriate.

• It is estimated that up to 50% of prescriptions are inappropriate.

Thank you for your participation

a very very last message.....

https://www.youtube.com/watch?v=-G4cEYQBVu4